675. Oxazole Cyanine and meroCyanine Dyes, and Intermediates. Part II.* Intermediates Derived from Desylamines (1:2-Diaryl-2-oxoethylamines).

By R. A. Jeffreys.

N-Alkyl- and N-aryl-desylamines (I) react with thiocarbonyl chloride, carbon disulphide, or acetyl chloride to give 4:5-diaryl-2-thio-oxazolines (II), $4: 5$-diaryl-2-thiothiazolines (VII), and 4:5-diaryl-2-methyloxazolium salts (V) respectively. These intermediates are used in the syntheses of mono- and tri-methincyanine dyes and merocyanine dyes derived from oxazole and thiazole. Many of the dyes with short resonance paths are fluorescent and almost colourless.
Continuing the investigation of oxazole dyes and intermediates as photographically useful compounds, we wished to prepare a series of hitherto unknown monomethin oxazole cyanines (VI; $\mathrm{Y}=\mathrm{Z}=\mathrm{O}$) and of merocyanines (IV) with directly linked nuclei. The reaction between two equivalents of 2 -methylazolium salt and pentyl nitrite in acetic anhydride, which provides symmetrical monomethincyanines in the benzoxazole series, ${ }^{1}$ failed to give the required dyes in the oxazole series. An alternative synthesis was explored, involving the use of 2 -alkylthio-oxazolium salts (III), which are intermediates common

[^0]to the preparation of dyes (IV) and (VI). The starting materials for the preparation of 4:5-diaryloxazole dyes, the desylamines ($1: 2$-diaryl-2-oxoethylamines) (I), are readily available by the condensation of benzoins with amines in the presence of acid catalysts. ${ }^{2}$ McCombie and Parkes ${ }^{3}$ showed that N-phenyldesylamine with carbonyl chloride gives 3:4:5-triphenyloxazol-2-one, and we now find that desylamines and thiocarbonyl chloride give 4 : 5 -diaryl-2-thio-oxazolines (II) with alkyl or aryl groups in the 3 -position. These thiones condense on fusion with alkyl esters to form water-soluble 2 -alkylthiooxazolium salts (III). The intermediates (II) and (III) have recently been described by Gompper, ${ }^{4}$ who prepared the 2 -thio-oxazolines from oxazol-2-ones and phosphorus pentasulphide. The salts (III) react with 2-methyloxazolium salts (V), to give di-(3:4:5substituted 2-oxazole)methincyanines (VI; $\mathrm{Y}=\mathrm{Z}=\mathrm{O}$), and with ketomethylene heterocyclic compounds to give merocyanines (IV). Both of these groups of dyes absorb strongly in the near-ultraviolet region and are almost colourless. Some are strongly fluorescent, as solids and in solution, especially in ultraviolet light. Compared with analogous cyanines derived from benzoxazole, naphth ($1^{\prime}: 2^{\prime}-4: 5$) oxazole, and naphth $\left(2^{\prime}: 1^{\prime}-4: 5\right.$) oxazole, which have absorption maxima in methanol at 370,400 , and $395 \mathrm{~m} \mu$ respectively, the 4 : 5-diphenyloxazole cyanines absorb at about $385 \mathrm{~m} \mu$, sometimes with inflections on the longer-wavelength side, at about $395 \mathrm{~m} \mu$. The crude desylamine from 4-methoxybenzoin and ethylamine was converted into the isomers 3 -ethyl-4(or 5)- p-methoxyphenyl-5(or 4)-phenyl-2-thio-oxazoline (II; $\mathrm{R}=\mathrm{Et}, \mathrm{R}^{1}=p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$ or $\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Ph}$ or $p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$), which were separated by chromatography. These were converted into isomeric dyes.

(XI)

Desylamines also react with carbon disulphide, the products being the analogous 2-thiothiazolines (VII). These are also converted into useful dye intermediates (VIII) by fusion with alkyl esters, thus providing a new route to thiazole analogues of dyes (IV) and (VI). Unsymmetrical cyanines with one oxazole and one thiazole nucleus can also be

[^1]obtained, with absorption maxima in methanol at $c a .415 \mathrm{~m} \mu$, i.e., between those of the analogous oxazole and thiazole ($440 \mathrm{~m} \mu$) cyanines. The thiazole dyes are also fluorescent.

Desylamines also condense with acetyl chloride in acetic anhydride to give 2 -methyloxazolium salts (V) directly. Alternative methods ${ }^{5}$ involve the isolation and subsequent quaternization of oxazole bases. The variety of desylamines available makes possible the synthesis of oxazolium salts and dyes possessing long-chain alkyl groups and aryl groups in the 3 -position. Examples of $2-2$-anilinovinyl- $4: 5$-diaryloxazolium salts (IX), symmetrical trimethincyanines (X), and dimethinmerocyanines (XI) have been prepared via 2 -methyloxazolium salts (V) by previous procedures ${ }^{5}$ or their modifications. $2-2$ '-Acetanilidovinyl derivatives of oxazoles are not readily prepared by refluxing anilinovinyl intermediates in acetic anhydride, and in dye syntheses that require acetanilidovinyl compounds this difficulty was overcome by using anilinovinyl compounds (1 mol .) with acetic anhydride (1 mol .) and triethylamine (1 mol . in excess of the usual quantity) in ethanol. Under these conditions, acetanilidovinyl derivatives could not be isolated, although good yields of dyes were obtained.

The vinylogous shifts of absorption maxima in methanol on passing from monomethinto trimethin-oxazole and -thiazole dyes are $120 \mathrm{~m} \mu$ and $140 \mathrm{~m} \mu$ respectively, values in agreement with those found in other cyanine dye series (such as the benzazoles) in which the monomethin dyes have planar resonance systems: also, an increase in molecular extinction coefficient is observed on increasing the polymethin chain length.

Many of the dyes are strong sensitizers for photographic gelatino-silver halide emulsions, although dyes with long-chain alkyl substituents are less efficient sensitizers.

Experimental

Throughout the Tables the following solvent abbreviations are used: $\mathrm{A}=$ ethyl acetate, $\mathrm{B}=$ benzene, $\mathrm{D}=$ ether, $\mathrm{E}=$ ethanol, $\mathrm{G}=$ ligroin (b. $\mathrm{p} .70-90^{\circ}$), $\mathrm{L}=$ light petroleum (b. p. $60-80^{\circ}$), $\mathrm{M}=$ methanol, $\mathrm{N}=$ nitrobenzene, $\mathrm{P}=$ pyridine, $\mathrm{W}:=$ water.

Ethyl-(2-oxo-1:2-diphenylethyl)amine Hydrochloride ($\mathrm{I}, \mathrm{HCl} ; \mathrm{R}=\mathrm{Et}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Pl}$).— Benzoin ($21 \cdot 2 \mathrm{~g}$.), 70% aqueous ethylamine ($30 \mathrm{c.c}$.), and ethylamine hydrochloride (1 g .) were refluxed for 4 hr . After 2 hr ., more aqueous ethylamine ($15 \mathrm{c} . \mathrm{c}$.) was added. The cooled solution was then made alkaline with aqueous N -sodium carbonate and extracted with ether Hydrogen chloride was passed into the dried ether extract, and the precipitated salt was filtered off and recrystallized from ethanol-ether as a fluffy white powder, m. p. 236° ($13.5 \mathrm{~g} ., 49 \%$) (Found: $\mathrm{N}, 5 \cdot 1 ; \mathrm{Cl}, 12 \cdot 9 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ONCl}$ requires $\mathrm{N}, 5 \cdot 0 ; \mathrm{Cl}, 12 \cdot 8 \%$).

Methyl-(2-oxo-1: 2-diphenylethyl)amine hydrochloride (Table 1) and ethyl-[1(and 2)-p-methoxyphenyl-2-oxo-2(and 1)-phenylethyl]amine hydrochloride were prepared by the same method. Other desylamine hydrochlorides (Table l) were prepared according to the method of Lutz et al. ${ }^{2}$

Table 1. Desylamine (1:2-diaryl-2-oxocthylamine) hydrochlorides (I, HCl).

R	$\mathrm{R}^{1}=\mathrm{R}^{2}$	Form ${ }^{\text {e }}$	Yield (\%)	M. p.
Me	Ph	Powder (E-D)	43	240° a
Bu	Ph	Powder (E-D)	33	229 b
$n-\mathrm{C}_{18} \mathrm{H}_{37}$	$\mathrm{Ph}{ }^{\text {c }}$	Wax	90	-
Bu	$p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	Needles (M-D)	68	$204{ }^{\text {d }}$
$n-\mathrm{C}_{12} \mathrm{H}_{25}$	$p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {c }}$	Wax	64	-

a Goodson and Moffett, J. Amer. Chem. Soc., 1949, 71, 3219, report m. p. 216-220 ${ }^{\circ}$. butz, Freek, and Murphey, J. Amer. Chem. Soc., 1948, 70, 2015, report m. p. 184-186 ${ }^{\circ}$. ${ }^{\circ}$ Crude product used to prepare 2 -methyloxazolium salt. Found: $\mathrm{N}, \mathbf{3 \cdot 7} ; \mathrm{Cl}, 9 \cdot 8 . \mathrm{C}_{\mathbf{2 0}} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NCl}$ requires $\mathrm{N}, \mathbf{3} \cdot \mathbf{8}$; $\mathrm{Cl}, 9 \cdot 8 \%$. Solvent in parentheses.

4:5-Diary? 2-thio-oxazolines (II) (Table 2).—A solution of the 1:2-diaryl-2-oxoethylamine hydrochloride (0.1 mol .) in water ($125 \mathrm{c} . \mathrm{c}$.) was made alkaline with sodium carbonate solution,

[^2]Table 2. 4:5-Diaryl-2-thio-oxazolines (II).
 p. $229^{\circ}{ }^{6}$ Total crude

a Gompper, Chem. Ber., 1956, 89, 1762 , reports m. p. 229 ${ }^{\circ}$. ${ }^{6}$ Total crude yield. The isomers were separated by chromatography
on alumina with ligroin-benzene mixtures as eluants. ${ }_{c}$ Solvent in parentheses. TABLE 3. 4:5-Diaryl-2-methyloxazolium salts (V).

$8 \cdot 9$ $6 \cdot 2$ $6 \cdot 86$ - $2 \cdot 96$ $8 \cdot 0 \varepsilon$ $8 \cdot 6$ $6 \cdot 0 \mathrm{I}$ $I \quad \mathrm{H}$ $(\%)$ $\mathrm{R}_{\mathrm{N}}^{\text {Reqd. }}$ -

$3 \cdot 9$
$3 \cdot 3$
$2 \cdot 9$
-
$3 \cdot 2$
$3 \cdot 1$
$2 \cdot 5$

 \begin{tabular}{ll}
salts (V). \& Found $($

\multicolumn{1}{l}{ Formula } \& N

$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{NCl}$ \& -

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{NCl}$ \& $3 \cdot 8$

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ONI}$ \& $3 \cdot 2$

$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{ONI}$ \& $2 \cdot 7$

- \& -

$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ONI}$ \& -

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{NCl}$ \& $3 \cdot 2$

$\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{NCl}$ \& $2 \cdot 6$

b Solvent in parentheses.

 TABLE 4. Monomethincyanine dyes (VI).

\multicolumn{1}{c}{$\mathrm{R}^{\mathbf{1}}=\mathrm{R}^{\mathbf{2}}$} \& \multicolumn{1}{c}{X} \& \multicolumn{1}{c}{ Form ${ }^{b}$}

Ph \& ClO_{4} \& Plates (E-D)

Ph \& ClO_{4} \& Leaflets (M-D)

Ph \& I \& Needles (E-D)

Ph \& I \& Leaflets (M-D)

Ph \& ClO_{4} \& Wax ${ }^{a}$

Ph \& ClO_{4} \& Wax ${ }^{a}$

Ph \& I \& Needles (M-D)

$p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$ \& ClO_{4} \& Needles (M-D)

$p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$ \& ClO_{4} \& Wax (A-G)

\& \& a

\& \&
\end{tabular}


```
Neqd.


            H, \(6.1 \%\).
Yield (\%)
    \(\begin{array}{cc}\text { previously. }{ }^{\circ} \text { ) } \\ \text { Found (\%) } \\ \text { N } & \text { Hal } \\ 4.7 & 22.8{ }^{\circ} \\ 4.6 & 5 . \\ 4.6 & 5.3 \\ 5.0 & 23.4 \\ 5.1 & 26 . \\ 5.0 & 6.6 \\ 4.1 & 5.5\end{array}\)

    used
                C, 64•4;

                                \(\begin{array}{ll}\text { (IV). } \\ \text { Found (\%) } \\ \mathrm{N} & \mathrm{S}\end{array}\)
            \(\left(\begin{array}{c}\% \\ \% \\ S\end{array}\right.\)
15.8
14.9
13.0
            \(\underset{i}{r} \quad \underset{i}{i}\)
                                O
                                \begin{tabular}{l}
13.0 \\
12.6 \\
\hline
\end{tabular}

                                \(\mathrm{Reqd}\).
N
6.9
6.4
                                \(\begin{array}{cc}7 \cdot 1 & 8 \cdot 2 \\ 10 \cdot 0 & 7 \cdot 6\end{array}\)
                        ; others are
; othes (XI)
9
Found (\%)
Fones \((\mathrm{XI})\).
    Found (\%) Reqd. (\%)

                            393
\(d\) Solvent in parentheses.

e Cream-coloured;
                                    M. p.
\(179^{\circ}\)
257
139
106
331
\(250^{a}\)
180
205
177
182
\(R^{2}\)
                                    Form \({ }^{d} \quad\) Yield (\%)
                                    Formula
                                yloxazolin-2-ylidene)-2-thio-azolid-4-ones (I
    M.
        \begin{tabular}{cc} 
Yield (\%) \\
87 \\
69 & \\
62 & \\
62 & \\
88 & 2 \\
54 & \\
\hline
\end{tabular}
        Form \({ }^{\text {a }}\)
Yellow (M-D)
\(\quad, \quad(\mathrm{A}-\mathrm{L})\)
", (M-D)
Orange-red \((\mathrm{M}-\mathrm{D})\)
Yellow (E-D)
Orange (M)
Brisms; others
        parentheses. \({ }^{\circ}\) Prisms; others are leaflets.

        \begin{tabular}{ll}
\multicolumn{1}{c}{R} & \multicolumn{1}{c}{\(\mathrm{R}^{1}=\mathrm{R}^{2}\)} \\
\(n-\mathrm{C}_{8} \mathrm{H}_{17}\) & Ph \\
\(n-\mathrm{C}_{12} \mathrm{H}_{25}\) & Ph \\
\(n-\mathrm{C}_{18} \mathrm{H}_{37}\) & Ph \\
Ph \\
Bu & Ph \\
\(n-\mathrm{C}_{12} \mathrm{H}_{25}\) & \(p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}\) \\
\(p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}\)
\end{tabular}
        x
        \({ }^{a}\) Solvent in parentheses. \({ }^{b}\) Prisms; others are leafiets.
-
\(\quad \mathrm{R}^{1}=\mathrm{R}^{2}\)
Ph
Ph
Ph
Ph
\(p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}\)
\(p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}\)
\(\quad{ }^{\circ}\) Solvent
and extracted with chloroform ( \(600 \mathrm{c} . \mathrm{c}\).). Thiocarbonyl chloride ( \(0 \cdot 1 \mathrm{~mol}\).) was slowly added to the dried, stirred chloroform solution, cooled in ice-water. After 30 min . at room temperature the solution was washed thoroughly with sodium carbonate solution, and water. On removal of the chloroform from the dried solution, the product solidified, and was purified by recrystallization.

4:5-Diaryl-2-methylthio-oxazolium Methyl Sulphates (III; X = \(\mathrm{MeSO}_{4}\) ).—A 4:5-diaryl-2-thio-oxazoline ( 1 mol .) and methyl sulphate ( 1.5 mols .) were fused together on the steam-bath for \(\frac{1}{2}-1 \mathrm{hr}\). The crude product, washed with ether, was used to prepare dyes.

3-Ethyl-4:5-diphenyl-2-thiothiazoline (VII; \(\mathrm{R}=\mathrm{Et}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}\) ).-To a solution of ethyl-(2-oxo-1 : 2-diphenylethyl)amine hydrochloride ( \(27.5 \mathrm{~g} ., 0 \cdot 1 \mathrm{~mol}\).) and carbon disulphide ( \(10 \mathrm{~g} ., 0.13 \mathrm{~mol}\).) in ethanol ( \(100 \mathrm{c} . \mathrm{c}\).) was added potassium hydroxide ( \(1 \mathrm{l} .2 \mathrm{~g} ., 0.2 \mathrm{~mol}\).) in water ( 12 c.c.), and the resulting solution was refluxed for 1 hr . The product was precipitated from the cooled solution with water, filtered off, and recrystallized from benzene-light petroleum as needles, m. p. \(132^{\circ}\) ( 17 g ., \(57 \%\) ) (Found : \(\mathrm{S}, 21.5 . \quad \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NS}_{2}\) requires \(\mathrm{S}, 21 \cdot 5 \%\) ).

3-Butyl-4:5-diphenyl-2-thiothiazoline (VII; \(\quad \mathrm{R}=\mathrm{Bu}, \mathrm{R}^{\mathbf{1}}=\mathrm{R}^{2}=\mathrm{Ph}\) ) was prepared similarly, as glistening leaflets, m. p. \(139^{\circ}\) (from benzene-light petroleum), in \(90 \%\) yield (Found : \(\mathrm{N}, 4 \cdot 2 . \quad \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NS}_{2}\) requires \(\mathrm{N}, 4 \cdot 3 \%\) ).

3-Alkyl-2-methylthio-4:5-diphenylthiazolium Toluene-p-sulphonates (VIII; \(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}\), \(\mathrm{X}=p-\mathrm{Me} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{3}\) ).-3-Alkyl-4:5-diphenyl-2-thiothiazoline ( 1 mol .) and methyl toluene- \(p\) sulphonate ( 1.1 mols .) were fused together at \(130^{\circ}\) for 1 hr . The crude products, washed with ether, were used to prepare dyes.

4:5-Diaryl-2-methyloxazolium Salts (V) (Table 3).-A solution of the 1:2-diaryl-2-oxoethylamine hydrochloride ( \(0 \cdot 1 \mathrm{~mol}\).) and acetyl chloride ( \(0 \cdot 1 \mathrm{~mol}\).) in acetic anhydride ( \(120 \mathrm{c} . \mathrm{c}\).) was refluxed for 3 hr . Solvents were removed at the pump, and the residue was dissolved in a little ethanol. This solution was poured into aqueous sodium perchlorate or potassium iodide to precipitate the required salt, which was purified by recrystallization.

Monomethincyanine Dyes (VI) (Table 4).-4 : 5-Diaryl-2-methylthio-azolium salt ( 0.01 mol .), 4 : 5-diaryl-2-methylazolium salt ( 0.01 mol .), and triethylamine ( 0.01 mol .) in ethanol ( \(20 \mathrm{c.c}\).) or pyridine ( \(20 \mathrm{c} . \mathrm{c}\).) were refluxed for 10 min . The cooled solution, if the dye did not crystallize, was poured into aqueous potassium iodide or sodium perchlorate to precipitate the product. The dye was recrystallized.

Symmetrical Oxazole Trimethincyanine Dyes (X) (Table 5).-4:5-Diaryl-2-methyloxazolium salt ( 0.01 mol .), 2 -2'-anilinovinyl-4 : 5-diaryloxazolium salt ( 0.01 mol .) (see Table 6), acetic anhydride ( 0.01 mol .), triethylamine ( 0.02 mol .), and ethanol ( \(20 \mathrm{c} . \mathrm{c}\).) were refluxed together for \(\frac{1}{4}-\frac{1}{2} \mathrm{hr}\)., and the solution was chilled; the product was filtered off and recrystallized.

3-Alkyl-5-(3-R-4 : 5-diaryloxazolin-2-ylidene)-2-thio-azolid-4-ones (IV) (Table 7).-4:5-Diaryl2 -methylthio-oxazolium salt ( 0.01 mol .), 3 -alkyl-azolid- 4 -one (thiazolidone, oxazolidone, or hydantoin) ( 0.01 mol .), and triethylamine ( 0.01 mol .) in ethanol ( \(25 \mathrm{c} . \mathrm{c}\).) were refluxed for \(\frac{1}{4} \mathrm{hr}\). A few drops of water were added, and the solution was chilled. The dye was filtered off, washed, and recrystallized.

3-Alkyl-5-(3-R-4: 5-diaryloxazolin-2-ylidene-ethylidene)-2-thio-azolid-4-ones (XI) (Table 8).--2-2'-Anilinovinyl-4 : 5-diaryloxazolium salt ( 0.01 mol .), 3 -alkyl- 2 -thio-azolid- 4 -one (as above) ( 0.01 mol .), acetic anhydride ( 0.01 mol .), and triethylamine ( 0.02 mol .) in ethanol ( \(25 \mathrm{c} . \mathrm{c}\).) were refluxed for 10 min . A few drops of water were added, and the solution was chilled. The dye was filtered off, washed, and recrystallized.

5-(3-Butyl-4:5-diphenylthiazolin-2-ylidene)-3-carboxymethyl-2-thiothiazolid-4-one (IV; thiazole analogue, \(\mathrm{R}=\mathrm{Bu}^{\mathrm{n}}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{H}\) ).-3-Butyl-2-methylthio-4:5diphenylthiazolium toluene- \(p\)-sulphonate ( 2.6 g .), 3-carboxymethyl-2-thiothiazolid-4-one ( 1.0 g .) and triethylamine ( 0.5 g .) in ethanol ( \(10 \mathrm{c} . \mathrm{c}\).) were refluxed for 10 min . The chilled solution was filtered, and the \(d y e\) recrystallized from pyridine-methanol as orange needles, m. p. \(\mathbf{2 6 6}^{\circ}\) (decomp.) ( 0.9 g ., \(38 \%\) ) (Found : \(\mathrm{S}, 20.0 . \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}_{3}\) requires \(\mathrm{S}, 19.9 \%\) ), \(\lambda_{\text {max. }} 423 \mathrm{~m} \mu\) ( \(\varepsilon 5.6 \times 10^{4}\) in MeOH ).
[3-Ethyl-4-p-methoxy-5-phenyl-2-oxazole][3-ethyl-4:5-diphenyl-2-oxazole]methincyanine Perchlorate (Analogue of VI, \(\mathrm{Y}=\mathrm{Z}=\mathrm{O}\) ).-3-Ethyl-4-p-methoxyphenyl-2-methyl-5-phenyloxazolium toluene- \(p\)-sulphonate ( 4.65 g .), 3-ethyl-2-methylthio-4:5-diphenyloxazolium methyl sulphate ( 4.07 g .), and triethylamine ( \(1.4 \mathrm{c} . \mathrm{c}\).) in ethanol ( \(20 \mathrm{c} . \mathrm{c}\).) were refluxed for \(\frac{1}{4} \mathrm{hr}\). Aqueous sodium perchlorate was added to the chilled solution, and the \(d y e\) which precipitated was filtered off, washed with a little ethanol, and recrystallized from pyridine-water as cream leaflets, m. p.
\(277^{\circ}\) ( \(\mathrm{I} \cdot 4 \mathrm{~g}\)., 22\%) (Found : \(\mathrm{N}, \mathbf{4} \cdot \mathbf{3}\); \(\mathrm{Cl}, 5 \cdot 6 . \mathrm{C}_{36} \mathrm{H}_{33} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{Cl}\) requires \(\mathrm{N}, 4 \cdot 4 ; \mathrm{Cl}, 5 \cdot 5 \%\) ), \(\lambda_{\text {max. }}\). \(380 \mathrm{~m} \mu\left(\varepsilon 3.9 \times 10^{4}\right.\) ), infl. \(394 \mathrm{~m} \mu\) (cf. dyes in Table 4a).

The author is indebted to other members of these Laboratories as follows: to Dr. E. B. Knott for helpful discussion, to Messrs. V. Searle and V. Horton for absorption measurements and the preparation of intermediates respectively, and to Mr. C. B. Dennis for the microanalyses.

\footnotetext{
Research Laboratories, Kodak Limited,
Wealdstone, Harrow, Middlesex.
}```


[^0]:    * Oxazole Cyanine and meroCyanine Dyes, and Intermediates, $J$., 1952, 4823, is regarded as Part I.
    ${ }^{1}$ Fisher and Hamer, J., 1934, 962.

[^1]:    ${ }^{2}$ Lutz, Freek, and Murphey, J. Amer. Chem. Soc., 1948, 70, 2015; Lutz and Murphey, ibid., 1949, 71, 478.
    ${ }_{3}$ McCombie and Parkes, $J ., 1912,101,1991$.
    ${ }^{4}$ Gompper, Chem. Ber., 1956, 89, 1762.

[^2]:    © Jeffreys, J., 1952, 4823.

